Difference between revisions of "AlphaFold2"

From ScientificComputing
Jump to: navigation, search
 
(53 intermediate revisions by 4 users not shown)
Line 1: Line 1:
__NOTOC__
 
 
{{back_to_tutorials}}
 
{{back_to_tutorials}}
  
== Load modules ==
+
[https://deepmind.com/research/case-studies/alphafold AlphaFold2] predicts a protein's 3D folding structure by its amino acid sequence with [https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology the accuracy that is competitive with experimental results]. This AI-powered structure prediction of AlphaFold2 has been recognized as [https://www.science.org/content/article/breakthrough-2021#section_breakthrough the scientific breakthrough of the year 2021]. [https://github.com/deepmind/alphafold The AlphaFold package] is now installed in the new software stack on Euler.
[https://github.com/deepmind/alphafold AlphaFold2] is installed in the new software stack and can be loaded as following.
+
 
 +
<!-- == Load modules ==
 +
The AlphaFold module can be loaded as following.
 
  $ env2lmod
 
  $ env2lmod
 
  $ module load gcc/6.3.0 openmpi/4.0.2 alphafold/2.1.1
 
  $ module load gcc/6.3.0 openmpi/4.0.2 alphafold/2.1.1
Line 13: Line 14:
 
  $ alphafold_init
 
  $ alphafold_init
 
  (venv_alphafold) [jarunanp@eu-login-18 ~]$  
 
  (venv_alphafold) [jarunanp@eu-login-18 ~]$  
 +
-->
  
== Databases ==
+
== Changelog ==
The AlphaFold databases has the total size when unzipped of 2.2 TB. Users can download the databases to $SCRATCH. However, if there are several users of AlphaFold in your group, institute or department, we recommend to use a group storage.
+
12/09/2023 - Branch for the new script using AlphaFold 2.3.1 merged with main branch and available for all users
  
For D-BIOL members, the AlphaFold databases are currently located at /cluster/work/biol/alphafold.
+
3/08/2023 - Uniref90 has been updated
  
== Download the AlphaFold databases to your $SCRATCH ==
+
25/07/2023 - New branch of the [ https://gitlab.ethz.ch/sis/alphafold_on_euler alphafold helper script] is currently being tested. This branch uses AlphaFold 2.3.1 and is fully migrated to SLURM.
* Download and install aria2c in your $HOME
 
$ cd $HOME
 
$ wget https://github.com/aria2/aria2/releases/download/release-1.36.0/aria2-1.36.0.tar.gz
 
$ tar xvzf aria2-1.36.0.tar.gz
 
$ cd aria2-1.36.0
 
$ module load gcc/6.3.0 gnutls/3.5.13 openssl/1.0.1e
 
$ ./configure --prefix=$HOME/.local
 
$ make
 
$ make install
 
$ export PATH="$HOME/.local/bin:$PATH"
 
$ which aria2c
 
~/.local/bin/aria2c
 
  
* Check if you have enough space in your $SCRATCH. You may need to free up your $SCRATCH in case there is not enough space.
+
20/07/2023 - Updated bfd, mgnify, pdb, uniprot and uniref30 databases. Uniref90 is in the process of being updated
$ lquota
 
+-----------------------------+-------------+------------------+------------------+------------------+
 
| Storage location:          | Quota type: | Used:            | Soft quota:      | Hard quota:      |
 
+-----------------------------+-------------+------------------+------------------+------------------+
 
| /cluster/home/jarunanp      | space      |        10.38 GB |        17.18 GB |        21.47 GB |
 
| /cluster/home/jarunanp      | files      |            85658 |          160000 |          200000 |
 
+-----------------------------+-------------+------------------+------------------+------------------+
 
| /cluster/shadow            | space      |        16.38 kB |          2.15 GB |          2.15 GB |
 
| /cluster/shadow            | files      |                7 |            50000 |            50000 |
 
+-----------------------------+-------------+------------------+------------------+------------------+
 
| /cluster/scratch/jarunanp  | space      |          2.42 TB |          2.50 TB |          2.70 TB |
 
| /cluster/scratch/jarunanp  | files      |          201844 |          1000000 |          1500000 |
 
+-----------------------------+-------------+------------------+------------------+------------------+
 
  
* Create a folder for the databases
+
17/07/2023 - AlphaFold 2.3.1 is available on Euler. Release notes are available [https://github.com/deepmind/alphafold/releases/tag/v2.3.1 here]
$ cd $SCRATCH
 
$ mkdir alphafold_databases
 
  
* Download the databases: you can call a script to download all the databases or call a script for each databases. These scripts are in the same directory $ALPHAFOLD_ROOT/scripts/.  
+
== Create a job script ==
 +
A job script is a BASH script containing commands to request computing resources, set up the computing environment, run the application and retrieve the results.
 +
Here we propose a breakdown of a typical job script for Alphafold2 on Euler. Please note that you can generate this script by using our custom script available [https://gitlab.ethz.ch/sis/alphafold_on_euler here].
 +
 +
=== Request computing resources ===
  
  $ bsub -W 24:00 "$ALPHAFOLD_ROOT/scripts/download_all_data.sh $SCRATCH/alphafold_databases"
+
AlphaFold2 can run with CPUs only, or with CPUs and GPUs which helps speed up the computation significantly. Here we request 8 CPU cores, in total 240GB of memory, 120GB of local scratch space and one GPU. Your SLURM script should start with #!/usr/bin/bash (the shebang) and the #SBATCH pragmas, that detail, line by line, which resources you would like to request for your alphafold run :
  
== Submit a job ==
+
#!/usr/bin/bash
Here is an example of a job submission script (job_script.bsub) which requests 12 CPU cores, in total 120GB of memory, in total 120GB of local scratch space and one GPU.
+
#SBATCH -n 8                                                    # Number of CPUs
 +
#SBATCH --time=24:00:00                                          # Runtime
 +
#SBATCH --mem-per-cpu=30000                                      # CPU memory per CPU core
 +
#SBATCH --nodes=1                                                # All CPUs in the same host
 +
#SBATCH -G 1                                                    # Number of GPUs
 +
#SBATCH --gres=gpumem:10240                                      # GPU memory
 +
#SBATCH --tmp=120000                                            # Scratch space per CPU core
 +
#SBATCH -A es_share                                              # Shareholder group name
 +
#SBATCH -J alphafold                                            # Job name
  
 +
 +
<!-- For LSF :
 
  #!/usr/bin/bash
 
  #!/usr/bin/bash
  #BSUB -n 12
+
  #BSUB -n 12                                                   # Number of CPUs
  #BSUB -W 4:00
+
  #BSUB -W 24:00                                                 # Runtime
  #BSUB -R "rusage[mem=10000, scratch=10000, ngpus_excl_p=1]"
+
  #BSUB -R "rusage[mem=10000, scratch=10000]"                    # CPU memory and scratch space per CPU core
  #BSUB -J alphafold
+
#BSUB -R "rusage[ngpus_excl_p=1] select[gpu_mtotal0>=10240]"   # Number of GPUs and GPU memory
+
#BSUB -R "span[hosts=1]"                                      # All CPUs in the same host
 +
  #BSUB -J alphafold                                             # Job name
 +
-->
 +
 
 +
=== Set up a computing environment for AlphaFold ===
 
  source /cluster/apps/local/env2lmod.sh
 
  source /cluster/apps/local/env2lmod.sh
  module load gcc/6.3.0 openmpi/4.0.2 alphafold/2.1.1
+
  module load gcc/6.3.0 openmpi/4.0.2 alphafold/2.3.1
  source /cluster/apps/nss/alphafold/venv_alphafold/bin/activate
+
  source /cluster/apps/nss/alphafold/venv_alphafold_2.3.1/bin/activate
   
+
 
  # Define paths to databases
+
=== Enable Unified Memory (if needed) ===
  DATA_DIR="/cluster/scratch/jarunanp/21_10_alphafold_databases"
+
If the input protein sequence is too large for a single GPU memory (approximately larger than 1500aa), enable Unified Memory to bridge the system memory to the GPU memory so that you can oversubscribe the GPU memory of a single GPU.
   
+
 
 +
  export TF_FORCE_UNIFIED_MEMORY=1
 +
export XLA_PYTHON_CLIENT_MEM_FRACTION="4.0"
 +
 
 +
=== Define paths ===
 +
  # Define paths to databases, fasta file and output directory
 +
  DATA_DIR="/cluster/project/alphafold" #Path to all of the alphafold databases on the cluster
 +
FASTA_DIR="/cluster/home/jarunanp/fastafiles" #Path to where the fastafile is stored
 +
OUTPUT_DIR=${TMPDIR}/output #Path to the immediate output of the run (in the automatically-generated script it would be the local scratch)
 +
 
 +
For the output directory, there are two options.
 +
* Use $SCRATCH (max 2.7TB), $HOME (max. 20GB) or group storage (/cluster/project or /cluster/work), e.g.,
 +
OUTPUT_DIR=${SCRATCH}/protein_name/output
 +
 
 +
* Use the local scratch as the output directory. To do so, request the scratch space with #SBATCH options (e.g., in this example we are requesting 120GB local scratch space in total using the --tmp option). At the end of the computation, don't forget to copy the result from there.
 +
 
 +
OUTPUT_DIR=${TMPDIR}/output
 +
...
 +
python /path/run_alphafold.py ...
 +
...
 +
cp ${TMPDIR}/output /to/desired/location
 +
or
 +
  rsync -av  $TMPDIR/output/ /to/desired/location
 +
 
 +
<!-- === Start Multi-Process Service on GPU (version >= 2.1.2, only for LSF) ===
 +
From the version 2.1.2, it is possible to enable running relaxation on GPU with the option --use_gpu_relax=1. This option will try to create multiple contexts on the GPU but, for LSF, the default GPU computing mode is exclusive and does not allow creating multiple contexts. This can be circumvented by starting [https://docs.nvidia.com/deploy/mps/index.html Multi-Process Service] with the command
 +
 
 +
nvidia-cuda-mps-control -d
 +
 
 +
For SLURM the default computing mode allows the creation of multiple contexts on GPUs, therefore the use of this option will be redundant. -->
 +
 
 +
=== Call Python run script ===
 
  python /cluster/apps/nss/alphafold/alphafold-2.1.1/run_alphafold.py \
 
  python /cluster/apps/nss/alphafold/alphafold-2.1.1/run_alphafold.py \
 
  --data_dir=$DATA_DIR \
 
  --data_dir=$DATA_DIR \
  --output_dir=$TMPDIR \
+
  --output_dir=$OUTPUT_DIR \
 
  --max_template_date="2021-12-06" \
 
  --max_template_date="2021-12-06" \
 
  --bfd_database_path=$DATA_DIR/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt \
 
  --bfd_database_path=$DATA_DIR/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt \
Line 80: Line 104:
 
  --uniclust30_database_path=$DATA_DIR/uniclust30/uniclust30_2018_08/uniclust30_2018_08 \
 
  --uniclust30_database_path=$DATA_DIR/uniclust30/uniclust30_2018_08/uniclust30_2018_08 \
 
  --mgnify_database_path=$DATA_DIR/mgnify/mgy_clusters_2018_12.fa \
 
  --mgnify_database_path=$DATA_DIR/mgnify/mgy_clusters_2018_12.fa \
--pdb70_database_path=$DATA_DIR/pdb70/pdb70 \
 
 
  --template_mmcif_dir=$DATA_DIR/pdb_mmcif/mmcif_files \
 
  --template_mmcif_dir=$DATA_DIR/pdb_mmcif/mmcif_files \
 
  --obsolete_pdbs_path=$DATA_DIR/pdb_mmcif/obsolete.dat \
 
  --obsolete_pdbs_path=$DATA_DIR/pdb_mmcif/obsolete.dat \
--fasta_paths=ubiquitin.fasta
 
 
# Copy the results from the compute node
 
mkdir -p output
 
cp -r $TMPDIR/* output
 
  
Submit a job with the command
+
Then, define the input fasta file, select the model preset (monomer or multimer) and define the path to structure databases accordingly.
  $ bsub < job_script.sh
+
* For a monomeric protein
 +
--fasta_paths=$FASTA_DIR/some_protein.fasta \
 +
--model_preset=monomer \
 +
--pdb70_database_path=$DATA_DIR/pdb70/pdb70
 +
 
 +
* For a multimeric protein
 +
--fasta_paths=$FASTA_DIR/some_complicated_protein.fasta \
 +
--model_preset=multimer \
 +
--pdb_seqres_database_path=$DATA_DIR/pdb_seqres/pdb_seqres.txt \
 +
--uniprot_database_path=$DATA_DIR/uniprot/uniprot.fasta
 +
 
 +
''' Enable relaxation on GPU (version >= 2.1.2)'''<br>
 +
In this version, it is possible to enable running relaxation on GPU with the option --use_gpu_relax. Please see above how to start MPS to use this option.
 +
--use_gpu_relax=1
 +
 
 +
<!-- === Disable Multi-Process Service (version >= 2.1.2, only for LSF) ===
 +
If MPS is enabled before running AlphaFold, disable MPS with the command
 +
 
 +
echo quit | nvidia-cuda-mps-control -->
 +
 
 +
== Submit a job ==
 +
For SLURM, submit a job with the command
 +
$ sbatch < run_alphafold.sbatch
 +
The screen output will be save in the slurm-'''JobID'''.out file, e.g slurm-3435300.out, unless other names for the standard output/error files has been defined with #SBATCH pragmas at the beginning of the script.
 +
<!-- For LSF, submit a job with the command  
 +
  $ bsub < run_alphafold.bsub -->
 +
 
 +
From [[Downloading_Alphafold_databases#Benchmark_results|our benchmark]], it took around 40 minutes to fold Ubiquitin[76aa] and 2.5 hours to fold T1050[779aa].
 +
 
 +
== Setup script ==
 +
 
 +
This setup script creates a job script with estimate computing resources depending on the input protein sequence. To download the setup script:
 +
 
 +
git clone https://gitlab.ethz.ch/sis/alphafold_on_euler.git
 +
 
 +
Usage:
 +
 
 +
./setup_alphafold_run_script.sh -f [Fasta file] -w [work directory] --max_template_date yyyy-mm-dd -b [LSF/SLURM]
 +
 
 +
Example:
 +
 
 +
$ ./setup_alphafold_run_script.sh -f ../../fastafiles/IFGSC_6mer.fasta -w $SCRATCH
 +
  Reading /cluster/home/jarunanp/alphafold_run/fastafiles/IFGSC_6mer.fasta
 +
  Protein name:            IFGSC_6mer
 +
  Number of sequences:    6
 +
  Protein type:            multimer
 +
  Number of amino acids:
 +
                    sum: 1246
 +
                    max: 242
 +
  Estimate required resources:
 +
    Run time: 24:00
 +
    Number of CPUs: 12
 +
    Total CPU memory: 120000
 +
    Number of GPUs: 1
 +
    Total GPU memory: 20480
 +
    Total scratch space: 120000
 +
  Output an LSF run script for AlphaFold2: /cluster/scratch/jarunanp/run_alphafold.bsub
 +
 
 +
For SLURM, submit the script with the command
 +
$ sbatch < run_alphafold.sbatch
 +
 
 +
<!-- For LSF, submit the script with the command
 +
$ bsub < run_alphafold.bsub -->
 +
 
 +
== Postprocessing ==
 +
 
 +
Similar plots as generated by the [https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb Colabfold jupyter notebook] can be created by the [https://gitlab.ethz.ch/sis/alphafold-postprocessing alphafold-postprocessing python script].
 +
It is available on Euler as a module
 +
module load gcc/6.3.0 alphafold-postprocessing
 +
postprocessing.py -o plots/ work_directory/
  
The screen output is saved in the output file named starting with ''lsf.o'' followed by the JobID, e.g., lsf.o195525946. Please see [[Job output|this page]] for how to read the output file.
+
The above command will process ''pkl'' files generated by ''alphafold'' in the folder ''work_directory/'' and put the resulting plots into a folder ''plots/''.
  
From testing folding [https://www.ebi.ac.uk/pdbe/entry/pdb/3h7p/protein/1 ubiquitin.fasta] with AlphaFold, it took around 40 minutes to finish for the databases stored on $SCRATCH.
+
The postprocessing is integrated in the setup script described above.
  
== Benchmark results ==
+
== Databases ==
AlphaFold2 uses HHsearch and HHblits from the HH-suite to perform protein sequence searching. The HH-suite searches do many random file access and read operations. Therefore, it is recommended to store the databases of AlphaFold on a solid state drive (SSD) due to the significantly higher input/output speed (IOPS) compared to a traditional mechanical hard disk drive (HDD).  
+
The AlphaFold databases are available for all cluster users at '''/cluster/project/alphafold'''.
  
We tested the performance of AlphaFold to fold two proteins ([https://www.ebi.ac.uk/pdbe/entry/pdb/3h7p/protein/1 ubiquitin.fasta with the length of 76 amino acids], [https://www.predictioncenter.org/casp14/target.cgi?target=T1050 T1050.fasta with the length of 779 amino acids]) reading the AlphaFold databases from our three central storage systems.
+
If you wish to download databases separately, you can see the instruction [[Downloading Alphafold databases|here]].
* '''/cluster/scratch''' is a fast, short-term, personal storage system based on SSD
 
* '''/cluster/project''' is a long-term group storage system which uses HDD for the permanent storage and NVMe flash caches to accelerate the reading speed
 
* '''/cluster/work''' is a fast, long-term, group storage system based on HDD and suitable for large files
 
  
The tests ran on four of NVIDIA GPU models available on Euler including RTX 2080 Ti, TITAN RTX, GTX 1080 Ti and GTX 1080 ([[GPU_job_submission#Available_GPU_node_types|see the GPU specs here]]). All jobs allocated 12 CPU cores, 1 GPU, the total memory of 120 GB and the total scratch space of 120 GB. The figures below show the benchmark results which are the average runtime of five runs for the tests with the databases on /cluster/scratch and /cluster/project. The tests with the databases on /cluster/work were run only once because the small reads on this storage system decrease significantly not only the performance of these particular tests but also the overall performance of the whole /cluster/work storage system. The tested compute nodes were not reserved for testing, i.e., the compute nodes might be loaded by other computational while the AlphaFold tests were running.
+
== Example ==
  
[[Image:Benchmark ubiquitin 1gpu.jpg|600px]] [[Image:Benchmark T1050 1gpu.jpg|600px]]
+
The Ubiquitin fastafile is provided with the AlphaFold setup script. It can be used to test AlphaFold2 on Euler. If the working directory is on $SCRATCH, a successful run would complete in ~40 min (depending on the type of resources allocated by the batch system) and generate the following files :
 +
Ubiquitin.done
 +
Ubiquitin.out
 +
Ubiquitin.err
  
From testing folding the two proteins with AlphaFold, /cluster/project shows to be the best choice for as a group storage for users of AlphaFold. The performance of AlphaFold when reading the data from /cluster/scratch and /cluster/project is comparable to one another and around 10 times faster than when reading the data from /cluster/work. /cluster/scratch is for short-term storage and only for personal use and, therefore, it is not an optimal solution for a group of users. Comparing GPU models, RTX 1080 Ti and TITAN RTX show better performance than GTX 1080 Ti and GTX 1080. The performance of AlphaFold is also affected by the network latency while running on the latter two GPUs which are located in Zurich and not together with the storage systems in Lugano.
+
Ubiquitin
 +
├── features.pkl
 +
├── msas
 +
│   ├── bfd_uniclust_hits.a3m
 +
│   ├── mgnify_hits.sto
 +
│   ├── pdb_hits.hhr
 +
│   └── uniref90_hits.sto
 +
├── ranked_0.pdb
 +
├── ranked_1.pdb
 +
├── ranked_2.pdb
 +
├── ranked_3.pdb
 +
├── ranked_4.pdb
 +
├── ranking_debug.json
 +
├── relaxed_model_1_pred_0.pdb
 +
├── relaxed_model_2_pred_0.pdb
 +
├── relaxed_model_3_pred_0.pdb
 +
├── relaxed_model_4_pred_0.pdb
 +
├── relaxed_model_5_pred_0.pdb
 +
├── result_model_1_pred_0.pkl
 +
├── result_model_2_pred_0.pkl
 +
├── result_model_3_pred_0.pkl
 +
├── result_model_4_pred_0.pkl
 +
├── result_model_5_pred_0.pkl
 +
├── timings.json
 +
├── unrelaxed_model_1_pred_0.pdb
 +
├── unrelaxed_model_2_pred_0.pdb
 +
├── unrelaxed_model_3_pred_0.pdb
 +
├── unrelaxed_model_4_pred_0.pdb
 +
└── unrelaxed_model_5_pred_0.pdb
  
 
== Further readings ==
 
== Further readings ==
 
* [https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology DeepMind Blog post: "AlphaFold: a solution to a 50-year-old grand challenge in biology"]
 
* [https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology DeepMind Blog post: "AlphaFold: a solution to a 50-year-old grand challenge in biology"]
 
* [https://ethz.ch/en/news-and-events/eth-news/news/2021/08/computer-algorithms-revolutionise-biology.html ETH News: "Computer algorithms are currently revolutionising biology"]
 
* [https://ethz.ch/en/news-and-events/eth-news/news/2021/08/computer-algorithms-revolutionise-biology.html ETH News: "Computer algorithms are currently revolutionising biology"]
 +
* [[AlphaFold2_presentation_21_March_2022#Slides | AlphaFold2 presentation slides 21 March 2022]]
 +
* [[Downloading_Alphafold_databases| Downloading AlphaFold databases and benchmark results]]
 
{{back_to_tutorials}}
 
{{back_to_tutorials}}

Latest revision as of 10:36, 28 September 2023

< Examples

AlphaFold2 predicts a protein's 3D folding structure by its amino acid sequence with the accuracy that is competitive with experimental results. This AI-powered structure prediction of AlphaFold2 has been recognized as the scientific breakthrough of the year 2021. The AlphaFold package is now installed in the new software stack on Euler.


Changelog

12/09/2023 - Branch for the new script using AlphaFold 2.3.1 merged with main branch and available for all users

3/08/2023 - Uniref90 has been updated

25/07/2023 - New branch of the [ https://gitlab.ethz.ch/sis/alphafold_on_euler alphafold helper script] is currently being tested. This branch uses AlphaFold 2.3.1 and is fully migrated to SLURM.

20/07/2023 - Updated bfd, mgnify, pdb, uniprot and uniref30 databases. Uniref90 is in the process of being updated

17/07/2023 - AlphaFold 2.3.1 is available on Euler. Release notes are available here

Create a job script

A job script is a BASH script containing commands to request computing resources, set up the computing environment, run the application and retrieve the results. Here we propose a breakdown of a typical job script for Alphafold2 on Euler. Please note that you can generate this script by using our custom script available here.

Request computing resources

AlphaFold2 can run with CPUs only, or with CPUs and GPUs which helps speed up the computation significantly. Here we request 8 CPU cores, in total 240GB of memory, 120GB of local scratch space and one GPU. Your SLURM script should start with #!/usr/bin/bash (the shebang) and the #SBATCH pragmas, that detail, line by line, which resources you would like to request for your alphafold run :

#!/usr/bin/bash
#SBATCH -n 8                                                     # Number of CPUs
#SBATCH --time=24:00:00                                          # Runtime
#SBATCH --mem-per-cpu=30000                                      # CPU memory per CPU core
#SBATCH --nodes=1                                                # All CPUs in the same host
#SBATCH -G 1                                                     # Number of GPUs
#SBATCH --gres=gpumem:10240                                      # GPU memory
#SBATCH --tmp=120000                                             # Scratch space per CPU core
#SBATCH -A es_share                                              # Shareholder group name
#SBATCH -J alphafold                                             # Job name


Set up a computing environment for AlphaFold

source /cluster/apps/local/env2lmod.sh
module load gcc/6.3.0 openmpi/4.0.2 alphafold/2.3.1
source /cluster/apps/nss/alphafold/venv_alphafold_2.3.1/bin/activate

Enable Unified Memory (if needed)

If the input protein sequence is too large for a single GPU memory (approximately larger than 1500aa), enable Unified Memory to bridge the system memory to the GPU memory so that you can oversubscribe the GPU memory of a single GPU.

export TF_FORCE_UNIFIED_MEMORY=1
export XLA_PYTHON_CLIENT_MEM_FRACTION="4.0"

Define paths

# Define paths to databases, fasta file and output directory
DATA_DIR="/cluster/project/alphafold" #Path to all of the alphafold databases on the cluster
FASTA_DIR="/cluster/home/jarunanp/fastafiles" #Path to where the fastafile is stored
OUTPUT_DIR=${TMPDIR}/output #Path to the immediate output of the run (in the automatically-generated script it would be the local scratch)

For the output directory, there are two options.

  • Use $SCRATCH (max 2.7TB), $HOME (max. 20GB) or group storage (/cluster/project or /cluster/work), e.g.,
OUTPUT_DIR=${SCRATCH}/protein_name/output
  • Use the local scratch as the output directory. To do so, request the scratch space with #SBATCH options (e.g., in this example we are requesting 120GB local scratch space in total using the --tmp option). At the end of the computation, don't forget to copy the result from there.
OUTPUT_DIR=${TMPDIR}/output
...
python /path/run_alphafold.py ...
...
cp ${TMPDIR}/output /to/desired/location
or
rsync -av  $TMPDIR/output/ /to/desired/location


Call Python run script

python /cluster/apps/nss/alphafold/alphafold-2.1.1/run_alphafold.py \
--data_dir=$DATA_DIR \
--output_dir=$OUTPUT_DIR \
--max_template_date="2021-12-06" \
--bfd_database_path=$DATA_DIR/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt \
--uniref90_database_path=$DATA_DIR/uniref90/uniref90.fasta \
--uniclust30_database_path=$DATA_DIR/uniclust30/uniclust30_2018_08/uniclust30_2018_08 \
--mgnify_database_path=$DATA_DIR/mgnify/mgy_clusters_2018_12.fa \
--template_mmcif_dir=$DATA_DIR/pdb_mmcif/mmcif_files \
--obsolete_pdbs_path=$DATA_DIR/pdb_mmcif/obsolete.dat \

Then, define the input fasta file, select the model preset (monomer or multimer) and define the path to structure databases accordingly.

  • For a monomeric protein
--fasta_paths=$FASTA_DIR/some_protein.fasta \
--model_preset=monomer \
--pdb70_database_path=$DATA_DIR/pdb70/pdb70
  • For a multimeric protein
--fasta_paths=$FASTA_DIR/some_complicated_protein.fasta \
--model_preset=multimer \
--pdb_seqres_database_path=$DATA_DIR/pdb_seqres/pdb_seqres.txt \
--uniprot_database_path=$DATA_DIR/uniprot/uniprot.fasta

Enable relaxation on GPU (version >= 2.1.2)
In this version, it is possible to enable running relaxation on GPU with the option --use_gpu_relax. Please see above how to start MPS to use this option.

--use_gpu_relax=1


Submit a job

For SLURM, submit a job with the command

$ sbatch < run_alphafold.sbatch

The screen output will be save in the slurm-JobID.out file, e.g slurm-3435300.out, unless other names for the standard output/error files has been defined with #SBATCH pragmas at the beginning of the script.

From our benchmark, it took around 40 minutes to fold Ubiquitin[76aa] and 2.5 hours to fold T1050[779aa].

Setup script

This setup script creates a job script with estimate computing resources depending on the input protein sequence. To download the setup script:

git clone https://gitlab.ethz.ch/sis/alphafold_on_euler.git

Usage:

./setup_alphafold_run_script.sh -f [Fasta file] -w [work directory] --max_template_date yyyy-mm-dd -b [LSF/SLURM]

Example:

$ ./setup_alphafold_run_script.sh -f ../../fastafiles/IFGSC_6mer.fasta -w $SCRATCH
 Reading /cluster/home/jarunanp/alphafold_run/fastafiles/IFGSC_6mer.fasta
 Protein name:            IFGSC_6mer
 Number of sequences:     6
 Protein type:            multimer
 Number of amino acids:
                   sum: 1246
                   max: 242
 Estimate required resources:
   Run time: 24:00
   Number of CPUs: 12
   Total CPU memory: 120000
   Number of GPUs: 1
   Total GPU memory: 20480
   Total scratch space: 120000
 Output an LSF run script for AlphaFold2: /cluster/scratch/jarunanp/run_alphafold.bsub

For SLURM, submit the script with the command

$ sbatch < run_alphafold.sbatch


Postprocessing

Similar plots as generated by the Colabfold jupyter notebook can be created by the alphafold-postprocessing python script. It is available on Euler as a module

module load gcc/6.3.0 alphafold-postprocessing
postprocessing.py -o plots/ work_directory/

The above command will process pkl files generated by alphafold in the folder work_directory/ and put the resulting plots into a folder plots/.

The postprocessing is integrated in the setup script described above.

Databases

The AlphaFold databases are available for all cluster users at /cluster/project/alphafold.

If you wish to download databases separately, you can see the instruction here.

Example

The Ubiquitin fastafile is provided with the AlphaFold setup script. It can be used to test AlphaFold2 on Euler. If the working directory is on $SCRATCH, a successful run would complete in ~40 min (depending on the type of resources allocated by the batch system) and generate the following files :

Ubiquitin.done
Ubiquitin.out
Ubiquitin.err
Ubiquitin
├── features.pkl
├── msas
│   ├── bfd_uniclust_hits.a3m
│   ├── mgnify_hits.sto
│   ├── pdb_hits.hhr
│   └── uniref90_hits.sto
├── ranked_0.pdb 
├── ranked_1.pdb
├── ranked_2.pdb
├── ranked_3.pdb
├── ranked_4.pdb
├── ranking_debug.json
├── relaxed_model_1_pred_0.pdb
├── relaxed_model_2_pred_0.pdb
├── relaxed_model_3_pred_0.pdb
├── relaxed_model_4_pred_0.pdb
├── relaxed_model_5_pred_0.pdb
├── result_model_1_pred_0.pkl
├── result_model_2_pred_0.pkl
├── result_model_3_pred_0.pkl
├── result_model_4_pred_0.pkl
├── result_model_5_pred_0.pkl
├── timings.json
├── unrelaxed_model_1_pred_0.pdb
├── unrelaxed_model_2_pred_0.pdb
├── unrelaxed_model_3_pred_0.pdb
├── unrelaxed_model_4_pred_0.pdb
└── unrelaxed_model_5_pred_0.pdb

Further readings

< Examples