Difference between revisions of "Getting started with GPUs"

From ScientificComputing
Jump to: navigation, search
(Python and GPUs)
Line 15: Line 15:
  
 
While your jobs will see all GPUs, LSF will set the [https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-control-gpu-visibility-cuda_visible_devices/ CUDA_VISIBLE_DEVICES] environment variable, which is honored by CUDA programs.
 
While your jobs will see all GPUs, LSF will set the [https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-control-gpu-visibility-cuda_visible_devices/ CUDA_VISIBLE_DEVICES] environment variable, which is honored by CUDA programs.
 +
 +
== Available GPU node types ==
 +
{| class="wikitable"
 +
|-
 +
! GPU Model !! Specifier !! GPU memory per GPU !! CPU cores per node !! CPU memory per node
 +
|-
 +
| NVIDIA GeForce GTX 1080 || <tt>GeForceGTX1080</tt> || 8&nbsp;GiB || 256&nbsp;GiB || 20
 +
|-
 +
| NVIDIA GeForce GTX 1080 Ti || <tt>GeForceGTX1080Ti</tt> || 11&nbsp;GiB || 256&nbsp;GiB || 20
 +
|-
 +
| NVIDIA GeForce RTX 2080 Ti || <tt>GeForceRTX2080Ti</tt> || 11&nbsp;GiB || 384&nbsp;GiB || 36
 +
|-
 +
| [[Nvidia_DGX-1_with_Tensor_Cores|NVIDIA Tesla V100-SXM2 32 GB]] || <tt>TeslaV100_SXM2_32GB</tt> || 32&nbsp;GiB || 40 || 512&nbsp;GiB
 +
|}
 +
 +
== How to select GPU memory ==
 +
 +
If you know that you will need more memory on a GPU than some models provide, <em>i.e.,</em> more than 8&nbsp;GB, then you can request that your job will run only on GPUs that have enough memory. Use the <tt>gpu_mtotal0</tt> host selection to do this. For example, if you need 10&nbsp;GB (=10240&nbsp; MB) per&nbsp;GPU:
 +
 +
  [sfux@lo-login-01 ~]$ '''bsub -R "rusage[ngpus_excl_p=1]" -R "select[gpu_mtotal0>=10240]" ./my_cuda_program'''
 +
 +
This ensures your job will not run on GPUs with less than 10&nbsp;GB of GPU memory.
 +
 +
== How to select a GPU model ==
 +
In some cases it is desirable or necessary to select the GPU model on which your job runs, for example if you know you code runs much faster on a newer model. However, you should consider that by narrowing down the list of allowable GPUs, your job may need to wait for a longer time.
 +
 +
To select a certain GPU model, add the <tt>-R "select[gpu_model1==GPU_MODEL]"</tt> resource requirement to bsub,
 +
 +
[sfux@lo-login-01 ~]$ '''bsub -R "rusage[ngpus_excl_p=1]" -R "select[gpu_model0==GeForceGTX1080]" ./my_cuda_program'''
  
 
==Python and GPUs==
 
==Python and GPUs==
Line 30: Line 59:
 
As an example for running a TensorFlow job on a GPU node, we are printing out the TensorFlow version, the string '''Hello TensorFlow!''' and the result of a simple matrix multiplication:
 
As an example for running a TensorFlow job on a GPU node, we are printing out the TensorFlow version, the string '''Hello TensorFlow!''' and the result of a simple matrix multiplication:
 
    
 
    
  [leonhard@lo-login-01 ~]$ '''cd testrun/python'''
+
  [sfux@lo-login-01 ~]$ '''cd testrun/python'''
  [leonhard@lo-login-01 python]$ '''module load python_gpu/2.7.13'''
+
  [sfux@lo-login-01 python]$ '''module load python_gpu/2.7.13'''
  [leonhard@lo-login-01 python]$ '''cat tftest1.py'''
+
  [sfux@lo-login-01 python]$ '''cat tftest1.py'''
 
  #/usr/bin/env python
 
  #/usr/bin/env python
 
  from __future__ import print_function
 
  from __future__ import print_function
Line 48: Line 77:
 
  print(sess.run(product))
 
  print(sess.run(product))
 
  sess.close()
 
  sess.close()
  [leonhard@lo-login-01 python]$ '''bsub -n 1 -W 4:00 -R "rusage[mem=2048, ngpus_excl_p=1]" python tftest1.py'''
+
  [sfux@lo-login-01 python]$ '''bsub -n 1 -W 4:00 -R "rusage[mem=2048, ngpus_excl_p=1]" python tftest1.py'''
 
  Generic job.
 
  Generic job.
 
  Job <10620> is submitted to queue <gpu.4h>.
 
  Job <10620> is submitted to queue <gpu.4h>.
  [leonhard@lo-login-01 python]$ '''bjobs'''
+
  [sfux@lo-login-01 python]$ '''bjobs'''
 
  JOBID      USER      STAT  QUEUE      FROM_HOST  EXEC_HOST  JOB_NAME  SUBMIT_TIME
 
  JOBID      USER      STAT  QUEUE      FROM_HOST  EXEC_HOST  JOB_NAME  SUBMIT_TIME
  10620      leonhard  PEND  gpu.4h    lo-login-01            *tftest.py Sep 28 08:02
+
  10620      sfux      PEND  gpu.4h    lo-login-01            *tftest.py Sep 28 08:02
  [leonhard@lo-login-01 python]$ '''bjobs'''
+
  [sfux@lo-login-01 python]$ '''bjobs'''
 
  JOBID      USER      STAT  QUEUE      FROM_HOST  EXEC_HOST  JOB_NAME  SUBMIT_TIME
 
  JOBID      USER      STAT  QUEUE      FROM_HOST  EXEC_HOST  JOB_NAME  SUBMIT_TIME
  10620      leonhard  RUN  gpu.4h    lo-login-01 lo-gtx-001  *ftest1.py Sep 28 08:03
+
  10620      sfux      RUN  gpu.4h    lo-login-01 lo-gtx-001  *ftest1.py Sep 28 08:03
  [leonhard@lo-login-01 python]$ '''bjobs'''
+
  [sfux@lo-login-01 python]$ '''bjobs'''
 
  No unfinished job found
 
  No unfinished job found
  [leonhard@lo-login-01 python]$ '''grep -A3 "Creating TensorFlow device" lsf.o10620'''
+
  [sfux@lo-login-01 python]$ '''grep -A3 "Creating TensorFlow device" lsf.o10620'''
 
  2017-09-28 08:08:43.235886: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080, pci bus id: 0000:04:00.0)
 
  2017-09-28 08:08:43.235886: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080, pci bus id: 0000:04:00.0)
 
  1.3.0
 
  1.3.0
 
  Hello, TensorFlow!
 
  Hello, TensorFlow!
 
  [[ 12.]]
 
  [[ 12.]]
  [leonhard@lo-login-01 python]$
+
  [sufx@lo-login-01 python]$
  
 
Please note, that your job will crash if you are running the GPU version of TensorFlow on a CPU node, because TensorFlow is checking on start up if the compute node has a GPU driver.
 
Please note, that your job will crash if you are running the GPU version of TensorFlow on a CPU node, because TensorFlow is checking on start up if the compute node has a GPU driver.
 
== How to select GPU memory ==
 
 
If you know that you will need more memory on a GPU than some models provide, <em>i.e.,</em> more than 8&nbsp;GB, then you can request that your job will run only on GPUs that have enough memory. Use the <tt>gpu_mtotal0</tt> host selection to do this. For example, if you need 10&nbsp;GB (=10240&nbsp; MB) per&nbsp;GPU:
 
 
  [leonhard@lo-login-01 ~]$ '''bsub -R "rusage[ngpus_excl_p=1]" -R "select[gpu_mtotal0>=10240]" ./my_cuda_program'''
 
 
This ensures your job will not run on GPUs with less than 10&nbsp;GB of GPU memory. The most memory capacities of different GPUs are
 
{| class="wikitable"
 
|-
 
! GPU Model !! GPU Memory
 
|-
 
| NVIDIA GeForce GTX 1080 || 8&nbsp;GiB
 
|-
 
| NVIDIA GeForce GTX 1080 Ti || 11&nbsp;GiB
 
|-
 
| NVIDIA GeForce RTX 2080 Ti || 11&nbsp;GiB
 
|-
 
| [[Nvidia_DGX-1_with_Tensor_Cores|NVIDIA Tesla V100-SXM2 32 GB]] || 32&nbsp;GiB
 
|}
 
 
 
== How to select a GPU model ==
 
 
In some cases it is desirable or necessary to select the GPU model on which your job runs, for example if you know you code runs much faster on a newer model. However, you should consider that by narrowing down the list of allowable GPUs, your job may need to wait for a longer time.
 
 
To select a certain GPU model, add the <tt>-R "select[gpu_model1==GPU_MODEL]"</tt> resource requirement to bsub,
 
 
[leonhard@lo-login-01 ~]$ '''bsub -R "rusage[ngpus_excl_p=1]" -R "select[gpu_model0==GeForceGTX1080]" ./my_cuda_program'''
 
 
The list of possible GPU models you can specify are
 
{| class="wikitable"
 
|-
 
! GPU Model !! Specifier !! CPU cores per node
 
|-
 
| NVIDIA GeForce GTX 1080 || <tt>GeForceGTX1080</tt> || 20
 
|-
 
| NVIDIA GeForce GTX 1080 Ti || <tt>GeForceGTX1080Ti</tt> || 20
 
|-
 
| NVIDIA GeForce RTX 2080 Ti || <tt>GeForceRTX2080Ti</tt> || 36
 
|-
 
| [[Nvidia_DGX-1_with_Tensor_Cores|NVIDIA Tesla V100-SXM2 32 GB]] || <tt>TeslaV100_SXM2_32GB</tt> || 40
 
|}
 

Revision as of 08:50, 15 November 2019

Introduction

Currently we only provide GPUs in the Leonhard Cluster, where access is restricted to Shareholders. Therefore the instructions on this wiki page are only referring to the Leonhard cluster.

How to submit a GPU job

All GPUs in Leonhard are configured in Exclusive Process mode. The GPU nodes have 20 cores, 8 GPUs, and 256 GB of RAM (of which only about 210 GB is usable). To run multi-node job, you will need to request span[ptile=XX] with XX being the number of CPU cores per GPU node, which is depending on the node type (the node types are listed in the table below).

The LSF batch system has partial integrated support for GPUs. To use the GPUs for a job node you need to request the ngpus_excl_p resource. It refers to the number of GPUs per node. This is unlike other resources, which are requested per core.

For example, to run a serial job with one GPU,

bsub -R "rusage[ngpus_excl_p=1]" ./my_cuda_program

or on a full node with all 8 GeForce GTX 1080 Ti GPUs and up to 90 GB of RAM,

bsub -n 20 -R "rusage[mem=4500,ngpus_excl_p=8]" -R "select[gpu_model0==GeForceGTX1080Ti]" ./my_cuda_program

or on two full nodes:

bsub -n 40 -R "rusage[mem=4500,ngpus_excl_p=8] -R "select[gpu_model0==GeForceGTX1080Ti]" span[ptile=20]" ./my_cuda_program

While your jobs will see all GPUs, LSF will set the CUDA_VISIBLE_DEVICES environment variable, which is honored by CUDA programs.

Available GPU node types

GPU Model Specifier GPU memory per GPU CPU cores per node CPU memory per node
NVIDIA GeForce GTX 1080 GeForceGTX1080 8 GiB 256 GiB 20
NVIDIA GeForce GTX 1080 Ti GeForceGTX1080Ti 11 GiB 256 GiB 20
NVIDIA GeForce RTX 2080 Ti GeForceRTX2080Ti 11 GiB 384 GiB 36
NVIDIA Tesla V100-SXM2 32 GB TeslaV100_SXM2_32GB 32 GiB 40 512 GiB

How to select GPU memory

If you know that you will need more memory on a GPU than some models provide, i.e., more than 8 GB, then you can request that your job will run only on GPUs that have enough memory. Use the gpu_mtotal0 host selection to do this. For example, if you need 10 GB (=10240  MB) per GPU:

 [sfux@lo-login-01 ~]$ bsub -R "rusage[ngpus_excl_p=1]" -R "select[gpu_mtotal0>=10240]" ./my_cuda_program

This ensures your job will not run on GPUs with less than 10 GB of GPU memory.

How to select a GPU model

In some cases it is desirable or necessary to select the GPU model on which your job runs, for example if you know you code runs much faster on a newer model. However, you should consider that by narrowing down the list of allowable GPUs, your job may need to wait for a longer time.

To select a certain GPU model, add the -R "select[gpu_model1==GPU_MODEL]" resource requirement to bsub,

[sfux@lo-login-01 ~]$ bsub -R "rusage[ngpus_excl_p=1]" -R "select[gpu_model0==GeForceGTX1080]" ./my_cuda_program

Python and GPUs

Because some Python packages need different installations for their CPU and GPU versions, we decided to have separate Python installations with regards to using CPUs and GPUs. For instance running the GPU version of TensorFlow on a CPU node will immediately crash, because TensorFlow is checking on start up if the compute node has a GPU driver. From TensorFlow 2.0.0 on, it is possible to have one installation for both, CPU and GPU.

For an overview on the available Python and TensorFlow versions, please have a look at Python on Leonhard

CPU version GPU version
module load python_cpu/3.6.1 module load python_gpu/3.6.1

Tensorflow example

As an example for running a TensorFlow job on a GPU node, we are printing out the TensorFlow version, the string Hello TensorFlow! and the result of a simple matrix multiplication:

[sfux@lo-login-01 ~]$ cd testrun/python
[sfux@lo-login-01 python]$ module load python_gpu/2.7.13
[sfux@lo-login-01 python]$ cat tftest1.py
#/usr/bin/env python
from __future__ import print_function
import tensorflow as tf

vers = tf.__version__
print(vers)
hello = tf.constant('Hello, TensorFlow!')
matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)

sess = tf.Session()
print(sess.run(hello))
print(sess.run(product))
sess.close()
[sfux@lo-login-01 python]$ bsub -n 1 -W 4:00 -R "rusage[mem=2048, ngpus_excl_p=1]" python tftest1.py
Generic job.
Job <10620> is submitted to queue <gpu.4h>.
[sfux@lo-login-01 python]$ bjobs
JOBID      USER      STAT  QUEUE      FROM_HOST   EXEC_HOST   JOB_NAME   SUBMIT_TIME
10620      sfux      PEND  gpu.4h     lo-login-01             *tftest.py Sep 28 08:02
[sfux@lo-login-01 python]$ bjobs
JOBID      USER      STAT  QUEUE      FROM_HOST   EXEC_HOST   JOB_NAME   SUBMIT_TIME
10620      sfux      RUN   gpu.4h     lo-login-01 lo-gtx-001  *ftest1.py Sep 28 08:03
[sfux@lo-login-01 python]$ bjobs
No unfinished job found
[sfux@lo-login-01 python]$ grep -A3 "Creating TensorFlow device" lsf.o10620
2017-09-28 08:08:43.235886: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080, pci bus id: 0000:04:00.0)
1.3.0
Hello, TensorFlow!
 12.
[sufx@lo-login-01 python]$

Please note, that your job will crash if you are running the GPU version of TensorFlow on a CPU node, because TensorFlow is checking on start up if the compute node has a GPU driver.