Difference between revisions of "Running applications"

From ScientificComputing
Jump to: navigation, search
Line 24: Line 24:
 
!style="background: #bfe5d9;color:black;" |[[File:neuralnetwork.png|140px]] <br /> Machine Learning
 
!style="background: #bfe5d9;color:black;" |[[File:neuralnetwork.png|140px]] <br /> Machine Learning
 
|-  style="background: white;text-align:left;"  
 
|-  style="background: white;text-align:left;"  
| [[ Neural network training with TensorFlow on CPU| - Neural network training with TensorFlow on CPU]]<br /> [[Neural network training with TensorFlow on GPU | - Neural network training with TensorFlow on GPU]]
+
| [[ Neural network training with TensorFlow on CPU| - Deep learning with TensorFlow on CPU]]<br /> [[Neural network training with TensorFlow on GPU | - Deep learning with TensorFlow on GPU]]
 
|}
 
|}
 
</td>
 
</td>
Line 30: Line 30:
 
<tr>
 
<tr>
 
<td>
 
<td>
{| class="wikitable" | style="background: white; text-align:center; width: 320px; height: 280px;"
+
{| class="wikitable" | style="background: white; text-align:center; width: 320px; height: 180px;"
 
!style="height: 35px;"| Python
 
!style="height: 35px;"| Python
 
|-  style="background: white;text-align:left;"  
 
|-  style="background: white;text-align:left;"  
Line 37: Line 37:
 
</td>
 
</td>
 
<td>
 
<td>
{| class="wikitable" | style="background: white;text-align:center; width: 320px; height: 280px;"
+
{| class="wikitable" | style="background: white;text-align:center; width: 320px; height: 180px;"
 
!style="height: 35px;"| Container
 
!style="height: 35px;"| Container
 
|-  style="background: white;text-align:left;"  
 
|-  style="background: white;text-align:left;"  
Line 44: Line 44:
 
</td>
 
</td>
 
<td>
 
<td>
{| class="wikitable" | style="background: white;text-align:center; width: 320px; height: 280px;"
+
{| class="wikitable" | style="background: white;text-align:center; width: 320px; height: 180px;"
 
!style="height: 35px;"| Interactive code development
 
!style="height: 35px;"| Interactive code development
 
|-  style="background: white;text-align:left;"  
 
|-  style="background: white;text-align:left;"  
Line 52: Line 52:
 
<tr>
 
<tr>
 
<td>
 
<td>
{| class="wikitable" | style="background: white;text-align:center; width: 320px; height: 280px;"
+
{| class="wikitable" | style="background: white;text-align:center; width: 320px; height: 180px;"
 
!style="height: 35px;"| Comsol
 
!style="height: 35px;"| Comsol
 
|-  style="background: white;text-align:left;"  
 
|-  style="background: white;text-align:left;"  
Line 59: Line 59:
 
</td>
 
</td>
 
<td>
 
<td>
{| class="wikitable" | style="background: white;text-align:center; width: 320px; height: 280px;"
+
{| class="wikitable" | style="background: white;text-align:center; width: 320px; height: 180px;"
 
!style="height: 35px;"| MATLAB
 
!style="height: 35px;"| MATLAB
 
|-  style="background: white;text-align:left;"  
 
|-  style="background: white;text-align:left;"  
Line 66: Line 66:
 
</td>
 
</td>
 
<td>
 
<td>
{| class="wikitable" | style="background: white;text-align:center; width: 320px; height: 280px;"
+
{| class="wikitable" | style="background: white;text-align:center; width: 320px; height: 180px;"
 
!style="height: 35px;"| More applications
 
!style="height: 35px;"| More applications
 
|-  style="background: white;text-align:left;"  
 
|-  style="background: white;text-align:left;"  

Revision as of 13:33, 18 August 2021

< Job output

Home >

Mpibcast.png
Parallel computing
- MPI hello world in C
- openMP hello world in C
- Distributed computing in R with Rmpi
Neuralnetwork.png
Machine Learning
- Deep learning with TensorFlow on CPU
- Deep learning with TensorFlow on GPU
Python
- Python virtual environment
- Python multiprocessing
- CuPy: NumPy & SciPy for GPU
Container
- Deploy a container using Singularity
- Submit a Singularity job
Interactive code development
- VSCode
- Jupyter
Comsol
- Comsol MATLAB LiveLink
- Comsol files in the home directory
MATLAB
Using MATLAB's Parallel Computing Toolkit
More applications
- Using Gaussian on Euler
- Turbomole

< Job output

Home >